माना $a_{1}, a_{2}, a_{3}, \ldots ., a_{49}$ एक समांतर श्रेढ़ी में ऐसे है कि $\sum_{k=0}^{12} a_{4 k+1}=416$ तथा $a_{9}+a_{43}=66$ है। यदि $a_{1}^{2}+a_{2}^{2}+\ldots . .+a_{17}^{2}=140\, m$ है, तो $m$ बराबर है

  • [JEE MAIN 2018]
  • A

    $68$

  • B

    $34$

  • C

    $33$

  • D

    $66$

Similar Questions

एक आदमी ने एक बैंक में $10000$ रुपये $5 \%$ वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, $15$ वें वर्ष में उसके खातें में कितनी रकम हो गई, तथा $20$ वर्षो बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।

यदि $a,\,b,\,c$ समांतर श्रेणी में हों, तो $(a + 2b - c)$ $(2b + c - a)$ $(c + a - b)$ =

मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?

  • [KVPY 2019]

श्रेणी $\sqrt 2  + \sqrt 8  + \sqrt {18}  + \sqrt {32}  + .........$ के  $24$ पदों का योगफल है

श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है