Coefficient of $x^{64}$ in the expansion of $(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$
$-220$
$-440$
$-215$
$-430$
If ${(1 + x - 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + .... + {a_{12}}{x^{12}}$, then the expression ${a_2} + {a_4} + {a_6} + .... + {a_{12}}$ has the value
The coefficient of $x^{70}$ in $x^2(1+x)^{98}+x^3(1+x)^{97}+$ $x^4(1+x)^{96}+\ldots \ldots . .+x^{54}(1+x)^{46}$ is ${ }^{99} \mathrm{C}_p-{ }^{46} \mathrm{C}_{\mathrm{q}}$.
Then a possible value to $\mathrm{p}+\mathrm{q}$ is :
Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is
The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is
The value of $^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ is