The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.

  • [JEE MAIN 2022]
  • A

    $(p \wedge(\sim r)) \Rightarrow q$

  • B

    $(\sim q) \Rightarrow((\sim r) \vee p)$

  • C

    $p \Rightarrow(q \vee r)$

  • D

    $(p \wedge(\sim q)) \Rightarrow r$

Similar Questions

The negation of the compound proposition $p \vee (\sim p \vee q)$ is

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]

The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a

The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is

The statement $p \to ( q \to p)$ is equivalent to

  • [JEE MAIN 2013]