The negation of the compound proposition $p \vee (\sim p \vee q)$ is
$(p\; \wedge \sim q)\; \wedge \sim p$
$(p\; \wedge \sim q)\; \vee \sim p$
$(p\; \vee \sim q)\; \vee \sim p$
None of these
Which of the following statement is a tautology?
Which of the following is true
Which of the following is a statement
The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-