The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a
Tautology and contradiction
Neither tautology nor contradiction
Contradiction
Tautology
Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :
Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to
The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ is a tautology, is
If $A$ : Lotuses are Pink and $B$ : The Earth is a planet. Then the
verbal translation of $\left( { \sim A} \right) \vee B$ is
The contrapositive of the statement "If I reach the station in time, then I will catch the train" is