The statement $p \to ( q \to p)$ is equivalent to
$p \to q$
$p\, \to \,(p \vee q)$
$p\, \to \,(p \to q)$
$p\, \to \,(p \wedge q)$
Among the two statements
$(S1):$ $( p \Rightarrow q ) \wedge( q \wedge(\sim q ))$ is a contradiction and
$( S 2):( p \wedge q ) \vee((\sim p ) \wedge q ) \vee$
$( p \wedge(\sim q )) \vee((\sim p ) \wedge(\sim q ))$ is a tautology
The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to
If $P$ and $Q$ are two statements, then which of the following compound statement is a tautology?
The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
Which Venn diagram represent the truth of the statements “No child is naughty”
Where $U$ = Universal set of human beings, $C$ = Set of children, $N$ = Set of naughty persons