સમીકરણ $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ ના ઉકેલો મેળવો
$(i = \sqrt{-1})$
$2 + i$, $1 -i$
$1 + i$, $1 -i$
$1 + 2i$, $-1 -i$
$1 + i$, $1 + i$
જો $z_1 = 6 + i$ અને $z_2 = 4 -3i$ તથા સંકર સંખ્યા $z$ એવી મળે કે જેથી $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, થાય તો $z$ માટે
જો $z$ સંકર સંખ્યા છે કે જેથી $\left|\frac{z-i}{z+2 i}\right|=1$ અને $|z|=\frac{5}{2} \cdot$ હોય તો $|z+3 i|$ મેળવો.
જો $z_1 = 1+2i$ અને $z_2 = 3+5i$ , હોય તો ${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\overline Z }_2}{Z_1}}}{{{Z_2}}}} \right) = $
જો $z_1, z_2, z_3$ $\in$ $C$ એવા મળે કે જેથી $|z_1| = |z_2| = |z_3| = 2$, હોય તો સમીકરણ $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ ની મહત્તમ કિમત મેળવો
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $