જો $z_1, z_2, z_3$ $\in$ $C$ એવા મળે કે જેથી $|z_1| = |z_2| = |z_3| = 2$, હોય તો સમીકરણ $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ ની મહત્તમ કિમત મેળવો
$18$
$36$
$9$
$72$
જો $(3 + i)z = (3 - i)\bar z,$તો સંકર સંખ્યા $z$ મેળવો.
સમીકરણ $|z| - z = 1 + 2i$ નો ઉકેલ મેળવો.
જો ${z_1}$ એ સંકર સંખ્યા છે કે જેમાં ( $|{z_1}| = 1$ )અને ${z_2}$ એ સંકર સંખ્યા છે, તો $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
જો $z=x+\mathrm{i} y, x y \neq 0$ એ સમીકરણ $z^2+\mathrm{i} \bar{z}=0$ નું સમાધાન કરે, તો $\left|\mathrm{z}^2\right|=$............................
જો $z = x + iy$ હોય તો $|z - 5|$ = . . . .