The slope of the tangent at the point $(h,h)$ of the circle ${x^2} + {y^2} = {a^2}$ is

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    Depends on $h$

Similar Questions

The line $y = mx + c$ will be a normal to the circle with radius $r$ and centre at $(a, b)$, if

Let a circle $C$ touch the lines $L_{1}: 4 x-3 y+K_{1}$ $=0$ and $L _{2}: 4 x -3 y + K _{2}=0, K _{1}, K _{2} \in R$. If a line passing through the centre of the circle $C$ intersects $L _{1}$ at $(-1,2)$ and $L _{2}$ at $(3,-6)$, then the equation of the circle $C$ is

  • [JEE MAIN 2022]

The equation of pair of tangents to the circle ${x^2} + {y^2} - 2x + 4y + 3 = 0$ from $(6, - 5)$, is

Tangents $AB$ and $AC$ are drawn from the point $A(0,\,1)$ to the circle ${x^2} + {y^2} - 2x + 4y + 1 = 0$. Equation of the circle through $A, B$ and $C$ is

The equations of the normals to the circle ${x^2} + {y^2} - 8x - 2y + 12 = 0$ at the points whose ordinate is $-1,$ will be