वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को
स्पर्श करती है
वास्तविक बिन्दुओं पर काटती है
काल्पनिक बिन्दुओं पर काटती है
इनमें से कोई नहीं
वृत्त ${x^2} + {y^2} - 2x + 4y + 1 = 0$ पर बिन्दु $A(0,\,1)$ से खींची गयीं स्पर्शियाँ $AB$ व $AC$ हैं, तो बिन्दुओं $A, B$ व $C$ से जाने वाले वृत्त का समीकरण है
यदि त्रिभुज, जो धनात्मक $x$-अक्ष तथा वत्त $( x -2)^{2}+( y -3)^{2}=25$ के बिन्दु $(5,7)$ पर खींचे गए अभिलम्ब तथा स्पर्श रेखा द्वारा बनता है, का क्षेत्रफल $A$ है, तो $24 A$ बराबर है
यदि ${c^2} > {a^2}(1 + {m^2})$ तो रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ को काटेगी
वृत्तों ${x^2} + {y^2} - x + y - 8 = 0$ व ${x^2} + {y^2} + 2x + 2y - 11 = 0,$ के बीच का कोण है
तीन वृत्तों के समीकरण ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ तथा ${x^2} + {y^2} - 16x + 81 = 0$ हैं, तब उस बिन्दु के निर्देशांक, जिससे तीनों वृत्तों पर खींची गई स्पर्श रेखाओं की लम्बाई बराबर हो, हैं