જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.
$150$
$90$
$120$
$60$
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
જો $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ તો $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ =
જો $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ થાય તો $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$
અંતરાલ $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ માં $x$ ની એવી કેટલી કિંમતો મળે કે જેથી $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$ થાય?
જો $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, તો $\theta = $