સાબિત કરો કે, $\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
We have
${\text{L}}{\text{.H}}{\text{.S}}{\text{. }} = \frac{1}{2}\left[ {2\cos 2x\cos \frac{x}{2} - 2\cos \frac{{9x}}{2}\cos 3x} \right]$
$ = {1}{2}[ \cos \left( {2x + \frac{x}{2}} \right) + \cos \left( {2x - \frac{x}{2}} \right)$
$ - \cos \left( {\frac{{9x}}{2} + 3x} \right) - \cos \left( {\frac{{9x}}{2} - 3x} \right) $
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} + \cos \frac{{3x}}{2} - \cos \frac{{15x}}{2} - \cos \frac{{3x}}{2}} \right]$
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} - \cos \frac{{15x}}{2}} \right]$
$ = \frac{1}{2}\left[ { - 2\sin \left\{ {\frac{{\frac{{5x}}{2} + \frac{{15x}}{2}}}{2}} \right\}\sin \left\{ {\frac{{\frac{{5x}}{2} - \frac{{15x}}{2}}}{2}} \right\}} \right]$
$ = - \sin 5x\sin \left( { - \frac{{5x}}{2}} \right)$
$ = \sin 5x\sin \frac{{5x}}{2} = R.H.S.$
જો $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
ધારોકે $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\} .$ તો $\sum_{\theta \in s} \sin ^2\left(\theta+\frac{\pi}{4}\right)=...........$.
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય
જો $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, તો $x =$
ચલ $x$ એ સમીકરણ $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x} = \sqrt 3$ એ ક્યાં અંતરાલમાં આવે છે ?