${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$( - \infty ,\, - 1) \cup (4, + \infty )$
$(4, + \infty )$
$( - 1,\,4)$
એકપણ નહી.
જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.
${\log _2}(x + 5) = 6 - x$ ના ઉકેલની સંખ્યા મેળવો.
જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
જો $a, b, c$ એ ધન સંખ્યાઓ છે કે જે એકબીજા થી $1$ ના તફાવત માં છે કે જેથી $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ તો $abc =$
$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ ની કિમત શોધો