જો ${a^2} + 4{b^2} = 12ab $ તો $\log (a + 2b)= . . .$ .
${1 \over 2}[\log a + \log b - \log 2]$
$\log {a \over 2} + \log {b \over 2} + \log 2$
${1 \over 2}[\log a + \log b + 4\log 2]$
${1 \over 2}[\log a - \log b + 4\log 2]$
જો ${\log _5}a.{\log _a}x = 2 $ તો $x = . . . .$
અસમતા ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$ નો ઉકેલ ગણ મેળવો
ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$ $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
જો ${\log _{10}}x = y,$ તો ${\log _{1000}}{x^2}= . . .$ .
જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો