સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
$x = 2$
$x = 3$
$x = 4$
$x = - 2$
જો ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712$ તો ${3^{12}} \times {2^8}$ માં રહેલા અંકોની સંખ્યા મેળવો.
${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.