સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
$x = 2$
$x = 3$
$x = 4$
$x = - 2$
જો $a, b, c$ એ ધન સંખ્યાઓ છે કે જે એકબીજા થી $1$ ના તફાવત માં છે કે જેથી $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ તો $abc =$
જો ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}} $ તો આપલે પૈકી . . . સત્ય છે.
${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}} = . . . .$
$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ નાં પૂર્ણાક ઉકેલો $x$ ની સંખ્યા $..........$ છે.
જો $y = {\log _a}x$ એ વ્યાખ્યાતીત હોય તો $'a'$ એ . . . હોવો જોઈએ.