The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is

  • A

    $( - \infty ,\, - 1) \cup (4, + \infty )$

  • B

    $(4, + \infty )$

  • C

    $( - 1,\,4)$

  • D

    None of these

Similar Questions

The number of solution of ${\log _2}(x + 5) = 6 - x$ is

${\log _4}18$ is

If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

The number ${\log _{20}}3$  lies in