The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is

  • A

    $\left( { - \infty ,\,2} \right]$

  • B

    $[2,\,4]$

  • C

    $\left[ {4, + \infty } \right)$

  • D

    None of these

Similar Questions

The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is

Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is

For $y = {\log _a}x$ to be defined $'a'$ must be

  • [IIT 1990]

If $3^x=4^{x-1}$, then $x=$

$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$

  • [IIT 2013]

The number of solution of ${\log _2}(x + 5) = 6 - x$ is