જો $a = {\log _{24}}12,\,b = {\log _{36}}24$ અને $c = {\log _{48}}36$ તો $1+abc = . . . .$
$2ab$
$2ac$
$2bc$
$0$
સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો.
જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.
જો $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?