$\lambda$ के सभी मानों का समुच्चय, जिसके लिये समीकरण निकाय, $x -2 y -2 z =\lambda x$, $x +2 y + z =\lambda y$ $- x - y =\lambda z$ के अनिरर्थक हल हो, होगा
एकल समुच्चय होगा।
ठीक दो अवयव विद्यमान होगें
रिक्त समुच्चय होगा।
दो से अधिक अवयव विद्यमान होंगे।
$\lambda$ के उन भिन्न मानों का योग, जिनके लिए समीकरण निकाय
$(\lambda-1) x +(3 \lambda+1) y +2 \lambda z =0$
$(\lambda-1) x +(4 \lambda-2) y +(\lambda+3) z =0$
$2 x +(3 \lambda+1) y +3(\lambda-1) z =0$ के शून्येतर (non-zero) हल हैं, है
माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है
यदि निम्न रैखिक समीकरण निकाय $2 x+2 a y+a z=0$, $2 x+3 b y+b z=0$, $2 x+4 c y+c z=0$ जहाँ $a , b , c \in R$ विभिन्न शून्येतर वास्तविक संख्याएँ है; का एक शून्येतर हल है, तो
यदि ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$,तो $x $ का मान होगा
यदि $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ तो निम्न में से कौन सा सम्बन्ध सत्य है