यदि निम्न रैखिक समीकरण निकाय $2 x+2 a y+a z=0$, $2 x+3 b y+b z=0$, $2 x+4 c y+c z=0$ जहाँ $a , b , c \in R$ विभिन्न शून्येतर वास्तविक संख्याएँ है; का एक शून्येतर हल है, तो
$a , b , c$ समान्तर श्रेढी में है
$a + b + c = 0$
$a , b , c$ गुणोत्तर श्रेढी में हैं।
$\frac{1}{ a }, \frac{1}{ b }, \frac{1}{ c }$ समान्तर श्रेढी में है।
माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है
यदि ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$,तो $x $ का मान होगा
रैखिक समीकरण निकाय
$x + \lambda y - z = 0$
$\lambda x - y - z = 0$
$x + y - \lambda z = 0$
का एक अतुच्छ हल होने के लिए:
रेखीय समीकरण निकाय $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ अद्वितीय हल रखता है, यदि
माना समीकरण निकाय
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :