यदि ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$,तो $x $ का मान होगा
$-14$
$2$
$6$
$7$
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
$'K'$ के मानो की संख्या, जिनके लिए समीकरण निकाय
$(k+1) x+8 y=4 k$
$k x+(k+3) y=3 k-1$
के पास कोई हल नहीं है, है
निकाय $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ के अनन्त हलों के लिये $ k$ के मानों की संख्या होगी
यदि $\omega $ इकाई का काल्पनिक मूल हो, तो $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ का मान होगा
यदि रैखिक समीकरण निकाय
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$ के अनंत हल है, तो $\alpha+\beta-\alpha \beta$ बराबर है ............. |