एक दूसरे से $5 \times {10^{ - 11}}\,m$ की दूरी पर स्थित इलेक्ट्रॉन एवं प्रोटॉन के मध्य स्थिर वैद्युत बल और गुरूत्वाकर्षण बल का अनुपात होगा (इलेक्ट्रॉन पर आवेश = $1.6 × 10 {^{-{19}}}\, C$, इलेक्ट्रॉन का द्रव्यमान $9.1 × 10 {^{-{31}}}$ $kg$, प्रोटॉन का द्रव्यमान = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2}$)
$2.36 \times 10^{39}$
$2.36 \times 10^{40}$
$2.34 \times 10^{41}$
$2.34 \times 10^{42}$
दो छोटी गोलाकार गेंदें प्रत्येक पर $Q = 10\,\mu C$ आवेश है, को दो समान लम्बाई प्रत्येक $1$ मीटर, के कुचालक धागों द्वारा छत के किसी बिन्दु से लटकाई गयी है। यह पाया गया है कि साम्यावस्था में धागों के मध्य चित्रानुसार ${60^o}$ का कोण है। धागों में तनाव.......$N$ है (दिया है : $\frac{1}{{(4\pi {\varepsilon _0})}} = 9 \times {10^9}\,Nm/{C^2}$)
विद्युत आवेश $Q$ को दो भागों में ${Q_1}$ तथा ${Q_2}$ में विभक्त करके परस्पर $R$ दूरी पर रखा गया है। दोनों के मध्य प्रतिकर्षण का बल अधिकतम होगा, जब
दो आवेश $ + 4e$ व $ + e$ को $x$ दूरी पर रखा गया है। एक अन्य आवेश को $ + e$ आवेश से कितनी दूर रखा जाये जिससे वह सन्तुलन में रह सके
तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
जब इलेक्ट्रॉन और प्रोटॉन के बीच $1.6 \,\dot{A}$ की दूरी है, तो उन दोनों के बीच अन्योन्य आकर्षण के कारण इलेक्ट्रॉन का त्वरण होता है,
$\left(m_{e} \simeq 9 \times 10^{-31}\, kg , \quad e=1.6 \times 10^{-19}\, C \right)$
(लीजिए $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9}\, N\,m ^{2}\, C ^{-2}\right)$