The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$
$2.36 \times 10^{39}$
$2.36 \times 10^{40}$
$2.34 \times 10^{41}$
$2.34 \times 10^{42}$
A negatively charged particle $p$ is placed, initially at rest, in $a$ constant, uniform gravitational field and $a$ constant, uniform electric field as shown in the diagram. What qualitatively, is the shape of the trajectory of the electron?
What is the net force on a $Cl^{-}$ placed at the centre of the bcc structure of $CsCl$
A $10\,\mu C$ charge is divided into two parts and placed at $1\,cm$ distance so that the repulsive force between them is maximum. The charges of the two parts are :
A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to
A point charge $q_1$ exerts force $F$ upon another point charge $q_2$. If a third charge $q_3$ be placed near the charge $q_2$, then the force that charge $q_1$ exerts on the charge $q_2$ will be