किसी खेत में पशुओं की जनसंख्या इस प्रकार परिवर्तित होती है: वर्ष $n+2$ तथा वर्ष $n$ की जनसंख्याओं के बीच का अंतर वर्ष $n+1$ की जनसंख्या समानुपातिक है। यहाँ $n$ एक प्राकृत संख्या है। यदि वर्ष $2010,2011$ और $2013$ में पशुओं की जनसंख्या क्रमानुसार $39,60$ और $123$ हो तो वर्ष $2012$ में जनसंख्या का मान होगा:
$81$
$84$
$87$
$90$
मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y^2=x^2+y=12$ एसे कितने वास्तविक क्रमित युग्म $(x, y)$ हैं जो इनके हल हैं?
माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
समीकरण $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ के सभी अपूर्णांक मूलों का योग है