माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........
$162$
$324$
$648$
$424$
माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।
समीकरण ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ के मूल होंगे
मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :
यदि ${x^2} + px + 1$, व्यंजक $a{x^3} + bx + c$ का एक गुणनखण्ड हो, तो
यदि $x$ वास्तविक है, तो फलन $\frac{{(x - a)(x - b)}}{{(x - c)}}$ का प्रत्येक मान वास्तविक होगा, यदि