वृत्तों ${x^2} + {y^2} = 25$ तथा ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दु हैं
$(4, 3)$ तथा $(4, -3)$
$(4, -3)$ तथा $(-4, -3)$
$(-4, 3)$ तथा $(4, 3)$
$(4, 3)$ तथा $(3, 4)$
माना सभी पूर्णांकों का समुच्चय $Z$ है,
$A =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+ y ^{2} \leq 4\right\}$
$B =\left\{( x , y ) \in Z \times Z : x ^{2}+ y ^{2} \leq 4\right\}$ तथा
$C =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+( y -2)^{2} \leq 4\right\}$ है। यदि $A \cap B$ से $A \cap C$ में संबंधों की कुल संख्या $2^{ P }$ है, तो $p$ का मान है
दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
माना रेखा $y=x+1$ में, वृत्त $c_1: x^2+y^2-2 x-6 y+$ $\alpha=0$ का दर्पण प्रतिबंब $c_2: 5 x^2+5 y^2+10 gx +$ $10 fy +38=0$ है। यदि वृत्त $c _2$ की त्रिज्या $r$ है, तो $\alpha+6 r^2$ बराबर है $...........।$
दो वत्तों जिनके समीकरण
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-22 x -10 y +137=0$ हैं, के लिए सही कथन चुनिए
वृत्तों ${x^2} + {y^2} - 1 = 0$, ${x^2} + {y^2} - 2x - 4y + 1 = 0$ के प्रतिच्छेद बिन्दुओं से जाने वाले एवं रेखा $x + 2y = 0$ को स्पर्श करने वाले वृत्त का समीकरण है