दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
$a + b + c = d + e + f$
$ad + be = c + f$
$ad + be = 2c + 2f$
$2ad + 2be = c + f$
वृत्त ${x^2} + {y^2} = 9$ एवं ${x^2} + {y^2} - 12y + 27 = 0$ एक दूसरे को स्पर्श करते हैं। इनकी उभयनिष्ठ स्पषी का समीकरण है
$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
दो वृत्त ${x^2} + {y^2} - 2x + 6y + 6 = 0$ तथा ${x^2} + {y^2} - 5x + 6y + 15 = 0$ परस्पर स्पर्श करते हैं। इनकी उभयनिष्ठ स्पर्श रेखा का समीकरण है
वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ तथा $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दु से होकर जाने वाले वृत्त का समीकरण, जिसका केन्द्र $13x + 30y = 0$ पर स्थित है, होगा
माना
$A =\left\{( x , y ) \in R \times R \mid 2 x ^{2}+2 y ^{2}-2 x -2 y =1\right\},$
$B =\left\{( x , y ) \in R \times R \mid 4 x ^{2}+4 y ^{2}-16 y +7=0\right\}$ तथा
$C =\left\{( x , y ) \in R \times R \mid x ^{2}+ y ^{2}-4 x -2 y +5 \leq r ^{2}\right\}$ है। तो $| r |$ का निम्नतम मान, जिसके लिए $A \cup B \subseteq C$ है, बराबर है