वृत्तों ${x^2} + {y^2} - 1 = 0$, ${x^2} + {y^2} - 2x - 4y + 1 = 0$ के प्रतिच्छेद बिन्दुओं से जाने वाले एवं रेखा $x + 2y = 0$ को स्पर्श करने वाले वृत्त का समीकरण है  

  • A

    ${x^2} + {y^2} + x + 2y = 0$

  • B

    ${x^2} + {y^2} - x + 20 = 0$

  • C

    ${x^2} + {y^2} - x - 2y = 0$

  • D

    $2({x^2} + {y^2}) - x - 2y = 0$

Similar Questions

वृत्तों $x^2+y^2-18 x-15 y+131=0$ तथा $\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-6 \mathrm{y}-7=0$ के उभयनिष्ठ स्पर्श रेखाओं की संख्या है :

  • [JEE MAIN 2023]

बिन्दु $(0, 0)$ तथा $(1, 0)$ से होकर जाने वाले तथा वृत्त ${x^2} + {y^2} = 9$ को स्पर्श करने वाले वृत्त का केन्द्र है

  • [AIEEE 2002]

माना दो वृत्त $C: x^2+y^2=4$  तथा $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ है। यदि $\lambda$ के सभी मानों. जिनके लिए वत्त $C$ तथा $C$ !' एक दसरे को दो भिन्न बिन्दुओं पर काटते हैं, का समुच्चय ${R}$ - $[\mathrm{a}, \mathrm{b}]$ है, तो बिन्दु $(8 \mathrm{a}+12,16 \mathrm{~b}-20)$ किस वक्र पर है?

  • [JEE MAIN 2024]

वृत्तों ${x^2} + {y^2} - 6x - 6y + 10 = 0$ तथा ${x^2} + {y^2} = 2$ का स्पर्श बिन्दु है 

वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है