वृत्तों ${x^2} + {y^2} - 6x - 6y + 10 = 0$ तथा ${x^2} + {y^2} = 2$ का स्पर्श बिन्दु है
$(0, 0)$
$(1, 1)$
$(1, -1)$
$(-1, -1)$
एक वृत्त मूलबिन्दु से जाता है एवं इसका केन्द्र $y = x$ पर है। यदि यह ${x^2} + {y^2} - 4x - 6y + 10 = 0$ को लम्बवत् काटता है, तो वृत्त का समीकरण होगा
यदि एक वृत्त $C$, जिसकी त्रिज्या 3 है, एक अन्य वृत्त $x^{2}+y^{2}+2 x-4 y-4=0$ को बाह्य रूप से बिंदु $(2,2)$ पर स्पर्श करता है, तो वृत्त $C$ द्वारा $x$-अक्ष पर काटे गए अंतःखंड की लंबाई है
वृत्त ${(x - 3)^2} + {(y - 4)^2} = {r^2}$ पूर्णत: वृत्त ${x^2} + {y^2} = {R^2}$ के भीतर है। यदि
दो वृत्त ${x^2} + {y^2} = 144$ तथा ${x^2} + {y^2} - 15x + 12y = 0$ के मूलाक्ष का समीकरण होगा
दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि