दो वृत्त ${x^2} + {y^2} = 144$ तथा ${x^2} + {y^2} - 15x + 12y = 0$ के मूलाक्ष का समीकरण होगा

  • A

    $15x - 12y = 0$

  • B

    $3x - 2y = 12$

  • C

    $5x - 4y = 48$

  • D

    इनमें से कोई नहीं

Similar Questions

उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} + 14x + 6y + 2 = 0$ को लम्बवत् प्रतिच्छेदित करता है और जिसका केन्द्र $(0, 2)$ है, है

माना कि $C_1$ एक वृत्त है जिसकी त्रिज्या $1$ और केंद्र मूल बिंदु है। माना कि $C_2$ एक वृत्त है जिसकी त्रिज्या $r$, जहाँ $1 < r < 3$ है, और केंद्र बिंदु $A=(4,1)$ है। $C_1$ एवं $C_2$ की दो भिन्न उभयनिष्ट स्पर्श रेखाएं (distinct common tangents) $P Q$ एवं $S T$ खींची जाती हैं। स्पर्श रेखा $P Q$, वृत्त $C_1$ को $P$ पर और वृत्त $C_2$ को $Q$ पर स्पर्श करती है। स्पर्श रेखा $S T$, वृत्त $C_1$ को $S$ पर और वृत्त $C_2$ को $T$ पर स्पर्श करती है। रेखा खंडों $P Q$ एवं $S T$ के मध्य बिन्दुओं को मिलाकर एक रेखा बनाई जाती है जो $x$-अक्ष को बिंदु $B$ पर मिलती है। यदि $A B=\sqrt{5}$, तब $r^2$ का मान है

  • [IIT 2023]

यदि एक वृत्त बिन्दु $(1, 2)$ से गुजरता है एवं वृत्त ${x^2} + {y^2} = 4$ को समकोण पर काटता है तो इसके केन्द्र के बिन्दुपथ का समीकरण है

वृत्त ${x^2} + {y^2} + 2x + 8y - 23 = 0$ और ${x^2} + {y^2} - 4x - 10y + 9 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है

दो वृत्त ${x^2} + {y^2} - 4y = 0$ व ${x^2} + {y^2} - 8y = 0$