दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि
$|a|=c$
$a=2c$
$|a|=2c$
$2|a|=c$
यदि वृत्तों ${x^2} + {y^2} + 2ax + cy + a = 0$ और ${x^2} + {y^2} - 3ax + dy - 1 = 0$ दो भिन्न बिन्दुओं $P$ व $Q$ पर प्रतिच्छेद करते हैं, तब रेखा $5x + by - a = 0$ $P$ व $Q$ से गुजरेगी
उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है
यदि वृत्त ${x^2} + {y^2} + 2ax + c = 0$ तथा ${x^2} + {y^2} + 2by + c = 0$ एक-दूसरे को स्पर्श करते हों तो
वृत्तों ${x^2} + {y^2} = 4$ और ${x^2} + {y^2} - 6x - 8y = 24$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
वृत्त $S = 0$ व रेखा $P = 0$ के प्रतिच्छेद बिन्दु से गुजरने वाले वृत्त का समीकरण है