बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे
$\left( {\frac{{18}}{{13}},\frac{{27}}{{13}}} \right)$
$\left( {\frac{9}{{13}},\frac{6}{{13}}} \right)$
$\left( {\frac{{18}}{{13}}, - \frac{{27}}{{13}}} \right)$
$\left( { - \frac{{18}}{{13}}, - \frac{9}{{13}}} \right)$
वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-24 x -10 y +160=0$ के लिए यदि बिन्दु $P_{1}$ एक वत्त पर है तथा बिन्दु $P_{2}$ दूसरे वत्त पर है, तो बिन्दुओं $P_{1}$ तथा $P_{2}$ के बीच की न्यूनतम दूरी है
दो वृत्तों $x^{2}+y^{2}=16$ तथा $x^{2}+y^{2}-2 y=0$, के लिए है
उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है
${x^2} + {y^2} + 2gx + c = 0$, ($c < 0$ के लिये) द्वारा समाक्ष वृत्त का निकाय प्रस्तुत करता है
एक बिन्दु $P$ से दो वृत्तों के मूलाक्षों पर स्पर्शियाँ खींची जाती हैं, जो वृत्तों को क्रमश: $Q$ तथा $R$ पर स्पर्श करती हैं, तब $PQR$ को मिलाने पर बनने वाला त्रिभुज होगा