क्रमित युग्म $( a , b )$ जिसके लिये रेखीय समीकरण

निकाय

$3 x -2 y + z = b$

$5 x -8 y +9 z =3$

$2 x + y + az =-1$

का कोई हल नहीं है, होगा:

  • [JEE MAIN 2022]
  • A

    $\left(3, \frac{1}{3}\right)$

  • B

    $\left(-3, \frac{1}{3}\right)$

  • C

    $\left(-3,-\frac{1}{3}\right)$

  • D

    $\left(3,-\frac{1}{3}\right)$

Similar Questions

समीकरण $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ के मूल हैं

माना $\lambda \in R$. रैखिक समीकरण निकाय $2 x _{1}-4 x _{2}+\lambda x _{3}=1$, $x _{1}-6 x _{2}+ x _{3}=2$, $\lambda x _{1}-10 x _{2}+4 x _{3}=3$ असंगत है

  • [JEE MAIN 2020]

रैखिक समीकरण निकाय

$x + \lambda y - z = 0$

$\lambda x - y - z = 0$

$x + y - \lambda z = 0$

का एक अतुच्छ हल होने के लिए:

  • [JEE MAIN 2016]

यदि $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ तो $K = $

माना $\alpha$ के सभी वास्तविक मानों, जिनके लिए रेखाएँ $2 x-y+3=0,6 x+3 y+1=0$ तथा $\alpha x+2 y-2=0$ एक त्रिभुज नहीं बनाती है, के वर्गों का योग $\mathrm{p}$ है, तो महत्तम पूर्णांक $\leq \mathrm{p}$ है .......।

  • [JEE MAIN 2024]