रैखिक समीकरण निकाय
$x + \lambda y - z = 0$
$\lambda x - y - z = 0$
$x + y - \lambda z = 0$
का एक अतुच्छ हल होने के लिए:
$\lambda $ के तथ्यतः दो मान हैं।
$\;\lambda $ के तथ्यत: तीन मान हैं।
$\lambda $ के अनंत मान हैं।
$\;\lambda $ का तथ्यत: एक मान है।
यदि $\alpha+\beta+\gamma=2 \pi$ है, तो समीकरण निकाय
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$
यदि $a,b,c$ धनात्मक हैं तथा सभी बराबर नहीं हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ का मान है
यदि रेखीय समीकरणों के निकाय $2 x-3 y=\gamma+5$ $\alpha x +5 y =\beta+1$, जहाँ $\alpha, \beta, \gamma \in R$ के अनन्त हल ह, तो $|9 \alpha+3 \beta+5 \gamma|$ का मान है
सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ का मान शून्य होगा यदि $a,b,c$ होंगे
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$