The number of values of $x$ in the interval $[0, 5 \pi ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is
$0$
$5$
$6$
$10$
The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ , will have a solution is
$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $
If $sin^2x + sinx \,cosx -6cos^2x = 0$ and $-\frac{\pi}{2} < x < 0$, then the value of $cos2x$, is
If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )
If $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ then $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ is equal to