$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $

  • A

    $\frac{{n\pi }}{4}$ or $n\pi \pm \frac{\pi }{3}$

  • B

    $\frac{{n\pi }}{4}$ or $n\pi \pm \frac{\pi }{6}$

  • C

    $\frac{{n\pi }}{4}$ or $2n\pi \pm \frac{\pi }{6}$

  • D

    None of these

Similar Questions

If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $

The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is

$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha  +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is

The general solution of $\tan 3x = 1$ is

If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$