If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is 
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )

  • A

    $[-1, 1]$

  • B

    $[-2, 1]$

  • C

    $[-1, 2)$

  • D

    $[-2, 2)$

Similar Questions

The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is

  • [KVPY 2019]

The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is

  • [KVPY 2009]

The solution set of the equation $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ is

Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is

  • [KVPY 2016]

If $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, then the general value of $\theta $ is