If $sin^2x + sinx \,cosx -6cos^2x = 0$ and $-\frac{\pi}{2} < x < 0$, then the value of $cos2x$, is
$-\frac{3}{5}$
$\frac{3}{5}$
$-\frac{4}{5}$
$\frac{4}{5}$
General solution of the equation $\cot \theta - \tan \theta = 2$ is
If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is