સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.
$7$
$13$
$19$
$25$
જો $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ અને $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ હોય તો
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય
સમીકરણ $\sin x + \sin y + \sin z = - 3\, , \,$$ 0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $ માટેના બીજની સંખ્યા . . . . છે.
$\cos x=\frac{1}{2}$ ઉકેલો.
જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $