माना अन्तराल $(0,10)$ में समीकरण $\sin x=\cos ^2 x$ के हलों की संख्या है।
$2$
$4$
$6$
$8$
यदि $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, तो $\theta $ का व्यापक मान है
अन्तराल $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ में $x$ के मानों की संख्या, जिसके लिए $14 \operatorname{cosec}^2 x-2 \sin ^2 x=21-4$ $\cos ^2 x$ सत्य हो, होगी
समुच्चय $S=\left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^2 2 \theta+\right.$ $6 \cos 2 \theta-10 \cos ^2 \theta+5=0$ में अवयवों की संख्या है $........$
समीकरण $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ का व्यापक हल होगा
समीकरण $\sin x + \sin y + \sin z = - 3$, $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $ के लिए रखता है