समीकरण $a\sin x + b\cos x = c$ , जहाँ $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ के हलों की संख्या है
$1$
$2$
अनन्त
इनमें से कोई नहीं
यदि $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta+6 \sin \theta$ बराबर है
यदि $2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ तब $x = $
यदि $L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ तथा $M =\cos ^{2}$$\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ है, तो
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
$\sin x=-\frac{\sqrt{3}}{2}$ का हल ज्ञात कीजिए