સમીકરણ $a\sin x + b\cos x = c$ , કે જ્યાં $|c|\, > \,\sqrt {{a^2} + {b^2}}$ ના ઉકેલની સંખ્યા મેળવો.
$1$
$2$
અનંત
એકપણ નહીં.
સમીકરણ $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ ના ઉકેલોની સંખ્યા ..... છે
જો $\mathrm{n}$ એ સમીકરણ $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$ નાં ઉકેલની સંખ્યા છે અને $S$ એ ઉકેલનો સરવાળો છે તો ક્રમયુક્ત $(\mathrm{n}, \mathrm{S})$ જોડ મેળવો.
અંતરાલ $[0,2 \pi]$ માં સમીકરણ $x +2 \tan x =\frac{\pi}{2}$ ના ઉકેલની સંખ્યા મેળવો.
જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.
જો $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ એ સમીકરણ $t ^{2}-9 t +8=0,$ નું સમાધાન કરે, તો $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ નું મૂલ્ય .......... થાય.