વક્ર $y=x^5-20 x^3+50 x+2$ એ $x$-અક્ષને કેટલી વાર ક્રોસ કરશે. ?
$4$
$3$
$5$
$1$
વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .
જો $y = f (x)$ અને $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.
ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે વ્યાખ્યાયિત થાય, તો:
$f(x) = | x - 2 | + | x - 5 |, x \in R$ વિધેય ધ્યાનમાં લો.
વિધાન $- 1 : f'(4) = 0.$
વિધાન $- 2 : [2, 5] $ માં $f $ સતત છે, $(2, 5)$ માં $f $ વિકલનીય છે અને $f(2) = f(5).$
$f(x)$ એ $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.