$f(x) = | x - 2 | + | x - 5 |, x \in R$ વિધેય ધ્યાનમાં લો.

વિધાન $- 1 : f'(4) = 0.$

વિધાન $- 2 : [2, 5] $ માં $f $ સતત છે, $(2, 5)$  માં $f $ વિકલનીય છે અને $f(2) = f(5).$

  • A

    વિધાન $ - 1 $ સાચું છે. વિધાન $ - 2 $ ખોટું છે.

  • B

    વિધાન $- 1 $ ખોટું છે. વિધાન $- 2 $ સાચું છે.

  • C

    વિધાન  $  - 1$ સાચું છે, વિધાન $- 2$  સાચું છે. ; વિધાન $- 2$  એ વિધાન $- 1 $ ની સાચી સમજૂતી છે.

  • D

    વિધાન $- 1$ સાચું છે, વિધાન $- 2 $ સાચું છે. ; વિધાન $ - 2 $ એ વિધાન $- 1 $ ની સાચી સમજૂતી નથી.

Similar Questions

ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી

$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.

નીચેના બે વિધાનો ધ્યાને લો.

$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$

$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,

  • [JEE MAIN 2023]

$c$ ની કિમત મેળવો કે જેથી વિધેય $f(x) = log{_e}x$ એ અંતરાલ $[1, 3]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે.

$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ  રોલનું પ્રમેય નું પાલન કરતુ હોય તો     

  • [IIT 2004]

વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.

  • [JEE MAIN 2020]