$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ के पूर्णांक हलों $x$ की संख्या है
$6$
$8$
$5$
$7$
निम्नलिखित युगपत $(simultaneous)$ समीकरण $\log _{1 / 3}(x+y)+\log _3(x-y)=2$
$2^{y^2}=512^{x+1}$ के हल युगमों $(solution\,pairs)$ $(x, y)$ की संख्या होगी
${\log _4}2 - {\log _8}2 + {\log _{16}}2 - ....\infty $ तक, का मान है
यदि ${\log _5}a.{\log _a}x = 2$हो, तब $ x $ का मान होगा
यदि $3^x=4^{x-1}$, तब $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
असमिका ${\log _{0.2}}\frac{{x + 2}}{x} \le 1$ के लिए $x $ के वास्तविक मानों का समुच्चय है