ગણ $S =\left\{\theta \in[0,2 \pi]: 3 \cos ^4 \theta-5 \cos ^2 \theta-2 \sin ^2 \theta+2=0\right\}$ માં સભ્યોની સંખ્યા $.............$ છે.
$10$
$8$
$9$
$12$
સમીકરણ ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ ઉકેલ તોજ શકય જો . . ..
સમીકરણ $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ ની કિમત ધન થવા માટે $x$ ની કિમત . . . થવી જોઈએ.
જો $4{\sin ^4}x + {\cos ^4}x = 1,$ તો $x =$
જો $\alpha ,\beta ,\gamma $ એ અનુક્રમે રેખાએ $x, y$ અને $z$ અક્ષો સાથે બનાવેલ ખૂણાઑ છે કે જેથી $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ થાય તો $\theta $ ની કિમત મેળવો
જ્યારે $x \in\left[0, \frac{\pi}{2}\right]$ હોય ત્યારે સમીકરણ $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ નાં ઉકેલોની સંખ્યા .......... છે.