एकैकी आच्छादक फलनों $f :\{1,3,5,7, \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots ., 100\}$
जिनके लिए $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . \geq f(99)$ हैं, की संख्या है
${ }^{50} P _{17}$
${ }^{50} P _{33}$
$33 ! \times 17 !$
$\frac{50 !}{2}$
माना $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$, तब समुच्चय $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ है
यदि $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, तो $f(y) = $
माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है
$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ द्वारा परिभाषित फलन का प्रांत है
$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$
को संतुष्ट करने वाले फलनों
$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$
की संख्या है -