$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$
को संतुष्ट करने वाले फलनों
$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$
की संख्या है -
$3$
$4$
$1$
$2$
माना $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ तथा $\mathrm{S}=\{1,2,3,4\}$ हैं। आच्छादक फलनों $f: R \rightarrow S$ जिनके लिये $f(a) \neq 1$ है, की कुल संख्या है
सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: R_* , \rightarrow R_*$, एकैकी तथा आच्छादक है, जहाँ $R_*$, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $R_*$, को $N$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $R_*$ही रहे, तो भी क्या यह परिणाम सत्य होगा?
माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.
माना फलन $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\lceil\mathrm{x}\rceil-\mathrm{x}}}$ जहाँ $\lceil\mathrm{x}\rceil$ न्यूनतम पूर्णांक $\geq x$ है, के प्रांत तथा परिसर क्रमशः समुच्चय $A$ तथा $B$ है। तो कथनों
$(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ तथा
$(\mathrm{S} 2): \mathrm{A} \cup \mathrm{B}=(1, \infty)$ में
यदि $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ तथा $m(b)$ दिये हुए $b$ के लिए, $f(x)$ का न्यूनतम मान है, तब $m(b)$ का परिसर (रेंज) है