$\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ का कोणांक और मापांक है
$\sqrt 2$ और $\frac{\pi }{6}$
$1$ और $0$
$1$ और $\frac{\pi }{3}$
$1$ और $\frac{\pi }{4}$
माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा
माना $z _{1}$ तथा $z _{2}$ कोई दो शून्येतर सम्मिश्र संख्याएँ इस प्रकार हैं कि $3\left| z _{1}\right|=4\left| z _{2}\right|$ है। यदि $z =\frac{3 z _{1}}{2 z _{2}}+\frac{2 z _{2}}{3 z _{1}}$ हो, तो
समीकरण $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,$वास्तविक) को संतुष्ट करने वाला $x$ का एक वास्तविक मान होगा, यदि
माना सभी सम्मिश्र संख्याओं $z$ का समुच्चय $S$ है जो $\left|z^2+z+1\right|=1$ को संतुष्ट करता है। तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \leq \frac{1}{2}$ होगा।
$(B)$ सभी $z \in S$ के लिये $| z | \leq 2$ होगा।
$(C)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \geq \frac{1}{2}$ होगा।
$(D)$ समुच्चय $S$ में ठीक चार अवयव होंगे।
यदि ${z_1},{z_2}$ तथा ${z_3},{z_4}$ संयुग्मी सम्मिश्र संख्याओं के दो युग्म हैं, तब $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$बराबर है