माना सभी सम्मिश्र संख्याओं $z$ का समुच्चय $S$ है जो $\left|z^2+z+1\right|=1$ को संतुष्ट करता है। तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \leq \frac{1}{2}$ होगा।
$(B)$ सभी $z \in S$ के लिये $| z | \leq 2$ होगा।
$(C)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \geq \frac{1}{2}$ होगा।
$(D)$ समुच्चय $S$ में ठीक चार अवयव होंगे।
$A,C$
$B,C$
$B,D$
$A,D$
सम्मिश्र संख्या $\frac{{{{(2 + i)}^2}}}{{3 + i}}$का संयुग्मी $a + ib$ के रूप में निम्न है
यदि ${z_1}$ तथा ${z_2}$ कोई दो सम्मिश्र संख्यायें हों, तब $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =
यदि $\mathrm{z}=\alpha+\mathrm{i} \beta,|\mathrm{z}+2|=\mathrm{z}+4(1+\mathrm{i})$, तो $\alpha+\beta$ तथा $\alpha \beta$ किस समीकरण के मूल हैं ?
किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
यदि ${z_1} = 1 + 2i$ और ${z_2} = 3 + 5i$, तब${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$=